Abstract
This study analyzed the performance evaluation of alkali-activated composites (AAC) with an alkali-sulfate activator and determined the expected effects of applying AACs to actual sites. Results revealed that when the binder weight was increased by 100 kg/m3 at 7 days of age, the homogel strength of ordinary Portland cement (OPC) and AAC increased by 0.9 and 5.0 MPa, respectively. According to the analysis of the matrix microstructures at 7 days of age, calcium silicate hydrates (C–S–H, Ca1.5SiO3.5·H2O) and ettringite (Ca6Al2(SO4)3(OH)12·26H2O) were formed in AAC, which are similar hydration products as found in OPC. Furthermore, the acid resistance analysis showed that the mass change of AAC in HCl and H2SO4 solutions ranged from 36.1% to 88.0%, lower than that of OPC, indicating AAC’s superior acid resistance. Moreover, the OPC and AAC binder weight ranges satisfying the target geltime (20–50 s) were estimated as 180.1–471.1 kg/m3 and 261.2–469.9 kg/m3, respectively, and the global warming potential (GWP) according to binder weight range was 102.3–257.3 kg CO2 eq/m3 and 72.9–126.0 kg CO2 eq/m3. Therefore, by applying AAC to actual sites, GWP is expected to be 29.5 (28.8%)–131.3 (51.0%) kg CO2 eq/m3 less than that of OPC.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献