Electrical Load Demand Forecasting Using Feed-Forward Neural Networks

Author:

Machado Eduardo,Pinto TiagoORCID,Guedes Vanessa,Morais HugoORCID

Abstract

The higher share of renewable energy sources in the electrical grid and the electrification of significant sectors, such as transport and heating, are imposing a tremendous challenge on the operation of the energy system due to the increase in the complexity, variability and uncertainties associated with these changes. The recent advances of computational technologies and the ever-growing data availability allowed the development of sophisticated and efficient algorithms that can process information at a very fast pace. In this sense, the use of machine learning models has been gaining increased attention from the electricity sector as it can provide accurate forecasts of system behaviour from energy generation to consumption, helping all the stakeholders to optimize their activities. This work develops and proposes a methodology to enhance load demand forecasts using a machine learning model, namely a feed-forward neural network (FFNN), by incorporating an error correction step that involves the prediction of the initial forecast errors by another FFNN. The results showed that the proposed methodology was able to significantly improve the quality of load demand forecasts, demonstrating a better performance than the benchmark models.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/ar5/syr/

2. Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0080

3. Climate Change 2014 Mitigation of Climate Change,2014

4. Secure Energy Transitions in the Power Sector https://www.iea.org/reports/%0Asecure-energy-transitions-in-the-power-sector

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3