Investigation of Load, Solar and Wind Generation as Target Variables in LSTM Time Series Forecasting, Using Exogenous Weather Variables

Author:

Shering Thomas1,Alonso Eduardo1,Apostolopoulou Dimitra2ORCID

Affiliation:

1. Department of Computer Science, City, University of London, London EC1V 0HB, UK

2. Oxford Institute for Energy Studies, Oxford OX2 6FA, UK

Abstract

Accurately forecasting energy metrics is essential for efficiently managing renewable energy generation. Given the high variability in load and renewable energy power output, this represents a crucial area of research in order to pave the way for increased adoption of low-carbon energy solutions. Whilst the impact of different neural network architectures and algorithmic approaches has been researched extensively, the impact of utilising additional weather variables in forecasts have received far less attention. This article demonstrates that weather variables can have a significant influence on energy forecasting and presents methodologies for using these variables within a long short-term memory (LSTM) architecture to achieve improvements in forecasting accuracy. Moreover, we introduce the use of the seasonal components of the target time series, as exogenous variables, that are also observed to increase accuracy. Load, solar and wind generation time series were forecast one hour ahead using an LSTM architecture. Time series data were collected in five Spanish cities and aggregated for analysis, alongside five exogenous weather variables, also recorded in Spain. A variety of LSTM architectures and hyperparameters were investigated. By tuning exogenous weather variables, a 33% decrease in mean squared error was observed for solar generation forecasting. A 22% decrease in mean absolute squared error (MASE), compared to 24-h ahead forecasts made by the Transmission Service Operator (TSO) in Spain, was also observed for solar generation. Compared to using the target variable in isolation, utilising exogenous weather variables decreased MASE by approximately 10%, 15% and 12% for load, solar and wind generation, respectively. By using the seasonal component of the target variables as an exogenous variable itself, we demonstrated decreases in MASE of 19%, 12% and 8% for load, solar and wind generation, respectively. These results emphasise the significant benefits of incorporating weather and seasonal components into energy-related time series forecasts.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3