Affiliation:
1. Department of Computer Science, City, University of London, London EC1V 0HB, UK
2. Oxford Institute for Energy Studies, Oxford OX2 6FA, UK
Abstract
Accurately forecasting energy metrics is essential for efficiently managing renewable energy generation. Given the high variability in load and renewable energy power output, this represents a crucial area of research in order to pave the way for increased adoption of low-carbon energy solutions. Whilst the impact of different neural network architectures and algorithmic approaches has been researched extensively, the impact of utilising additional weather variables in forecasts have received far less attention. This article demonstrates that weather variables can have a significant influence on energy forecasting and presents methodologies for using these variables within a long short-term memory (LSTM) architecture to achieve improvements in forecasting accuracy. Moreover, we introduce the use of the seasonal components of the target time series, as exogenous variables, that are also observed to increase accuracy. Load, solar and wind generation time series were forecast one hour ahead using an LSTM architecture. Time series data were collected in five Spanish cities and aggregated for analysis, alongside five exogenous weather variables, also recorded in Spain. A variety of LSTM architectures and hyperparameters were investigated. By tuning exogenous weather variables, a 33% decrease in mean squared error was observed for solar generation forecasting. A 22% decrease in mean absolute squared error (MASE), compared to 24-h ahead forecasts made by the Transmission Service Operator (TSO) in Spain, was also observed for solar generation. Compared to using the target variable in isolation, utilising exogenous weather variables decreased MASE by approximately 10%, 15% and 12% for load, solar and wind generation, respectively. By using the seasonal component of the target variables as an exogenous variable itself, we demonstrated decreases in MASE of 19%, 12% and 8% for load, solar and wind generation, respectively. These results emphasise the significant benefits of incorporating weather and seasonal components into energy-related time series forecasts.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献