Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions

Author:

Shi Han,Zhao Hai,Liu Yang,Gao Wei,Dou Sheng-Chang

Abstract

With the development of the Internet of Battlefield Things (IoBT), soldiers have become key nodes of information collection and resource control on the battlefield. It has become a trend to develop wearable devices with diverse functions for the military. However, although densely deployed wearable sensors provide a platform for comprehensively monitoring the status of soldiers, wearable technology based on multi-source fusion lacks a generalized research system to highlight the advantages of heterogeneous sensor networks and information fusion. Therefore, this paper proposes a multi-level fusion framework (MLFF) based on Body Sensor Networks (BSNs) of soldiers, and describes a model of the deployment of heterogeneous sensor networks. The proposed framework covers multiple types of information at a single node, including behaviors, physiology, emotions, fatigue, environments, and locations, so as to enable Soldier-BSNs to obtain sufficient evidence, decision-making ability, and information resilience under resource constraints. In addition, we systematically discuss the problems and solutions of each unit according to the frame structure to identify research directions for the development of wearable devices for the military.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thin film fabrication for wearable electronics: Journey so far;Reference Module in Materials Science and Materials Engineering;2024

2. Multi-source information fusion: Progress and future;Chinese Journal of Aeronautics;2023-12

3. Design of Low Profile Broadband Wearable Antenna for On Body WBAN Applications;2023 18th International Conference on Emerging Technologies (ICET);2023-11-06

4. Toward Wearable Sensors: Advances, Trends, and Challenges;ACM Computing Surveys;2023-07-17

5. Hardware Design and Implementation of Multiagent MLP Regression for the Estimation of Gunshot Direction on IoBT Edge Gateway;IEEE Sensors Journal;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3