Research on the Human Motion Recognition Method Based on Wearable

Author:

Wang Zhao1,Jin Xing1ORCID,Huang Yixuan1,Wang Yawen1

Affiliation:

1. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

The accurate analysis of human dynamic behavior is very important for overcoming the limitations of movement diversity and behavioral adaptability. In this paper, a wearable device-based human dynamic behavior recognition method is proposed. The method collects acceleration and angular velocity data through a six-axis sensor to identify information containing specific behavior characteristics in a time series. A human movement data acquisition platform, the DMP attitude solution algorithm, and the threshold algorithm are used for processing. In this experiment, ten volunteers wore wearable sensors on their bilateral forearms, upper arms, thighs, calves, and waist, and movement data for standing, walking, and jumping were collected in school corridors and laboratory environments to verify the effectiveness of this wearable human movement recognition method. The results show that the recognition accuracy for standing, walking, and jumping reaches 98.33%, 96.67%, and 94.60%, respectively, and the average recognition rate is 96.53%. Compared with similar methods, this method not only improves the recognition accuracy but also simplifies the recognition algorithm and effectively saves computing resources. This research is expected to provide a new perspective for the recognition of human dynamic behavior and promote the wider application of wearable technology in the field of daily living assistance and health management.

Funder

Jilin Province Science and Technology Development Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3