Affiliation:
1. Industrial Engineering Department, Faculty of Engineering, Bursa Uludağ University, 16059 Bursa, Turkey
Abstract
Estimating the project effort remains a challenge for project managers and effort estimators. In the early phases of a project, having a high level of uncertainty and lack of experience cause poor estimation of the required work. Especially for projects that produce a highly customized unique product for each customer, it is challenging to make estimations. Project effort estimation has been studied mainly for software projects in the literature. Currently, there has been no study on estimating effort in customized machine development projects to the best of our knowledge. This study aims to fill this gap in the literature regarding project effort estimation for customized machine development projects. Additionally, this study focused on a single phase of a project, the automation phase, in which the machine is automated according to customer-specific requirements. Therefore, the effort estimation of this phase is crucial. In some cases, this is the first time that the company has experienced the requirements specific to the customer. For this purpose, this study proposed a model to estimate how much work is required to automate a machine. Insufficient effort estimation is one of the main reasons behind project failures, and nowadays, researchers prefer more objective approaches such as machine learning over expert-based ones. This study also proposed an artificial neural network (ANN) model for this purpose. Data from past projects were used to train the proposed ANN model. The proposed model was tested on 11 real-life projects and showed promising results with acceptable prediction accuracy. Additionally, a desktop application was developed to make this system easier to use for project managers.
Subject
Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software
Reference47 articles.
1. An optimized case-based software project effort estimation using genetic algorithm;Hameed;Inf. Softw. Technol.,2023
2. Effort estimation in large-scale software development: An industrial case study;Usman;Inf. Softw. Technol.,2018
3. and Sangwan, O.P. (2017, January 12–13). Software effort estimation using machine learning techniques. Proceedings of the 7th International Conference on Cloud Computing, Data Science & Engineering–Confluence, Noida, India.
4. The impact of customer expectation on software development effort estimates;Int. J. Proj. Manag.,2004
5. Extreme learning machine applied to software development effort estimation;Carvalho;IEEE Access,2021
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献