An Artificial Neural Network Model for Project Effort Estimation

Author:

Şengüneş Burcu1ORCID,Öztürk Nursel1

Affiliation:

1. Industrial Engineering Department, Faculty of Engineering, Bursa Uludağ University, 16059 Bursa, Turkey

Abstract

Estimating the project effort remains a challenge for project managers and effort estimators. In the early phases of a project, having a high level of uncertainty and lack of experience cause poor estimation of the required work. Especially for projects that produce a highly customized unique product for each customer, it is challenging to make estimations. Project effort estimation has been studied mainly for software projects in the literature. Currently, there has been no study on estimating effort in customized machine development projects to the best of our knowledge. This study aims to fill this gap in the literature regarding project effort estimation for customized machine development projects. Additionally, this study focused on a single phase of a project, the automation phase, in which the machine is automated according to customer-specific requirements. Therefore, the effort estimation of this phase is crucial. In some cases, this is the first time that the company has experienced the requirements specific to the customer. For this purpose, this study proposed a model to estimate how much work is required to automate a machine. Insufficient effort estimation is one of the main reasons behind project failures, and nowadays, researchers prefer more objective approaches such as machine learning over expert-based ones. This study also proposed an artificial neural network (ANN) model for this purpose. Data from past projects were used to train the proposed ANN model. The proposed model was tested on 11 real-life projects and showed promising results with acceptable prediction accuracy. Additionally, a desktop application was developed to make this system easier to use for project managers.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference47 articles.

1. An optimized case-based software project effort estimation using genetic algorithm;Hameed;Inf. Softw. Technol.,2023

2. Effort estimation in large-scale software development: An industrial case study;Usman;Inf. Softw. Technol.,2018

3. and Sangwan, O.P. (2017, January 12–13). Software effort estimation using machine learning techniques. Proceedings of the 7th International Conference on Cloud Computing, Data Science & Engineering–Confluence, Noida, India.

4. The impact of customer expectation on software development effort estimates;Int. J. Proj. Manag.,2004

5. Extreme learning machine applied to software development effort estimation;Carvalho;IEEE Access,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3