Evolutionary Game Analysis of Data Resale Governance in Data Trading

Author:

Sun Yong12ORCID,Zhang Yafeng34,Li Jinxiao34,Zhang Sihui56

Affiliation:

1. School of Public Administration, Guangzhou University, Guangzhou 510006, China

2. Institute of Rural Revitalization, Guangzhou University, Guangzhou 510006, China

3. School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100190, China

4. School of Intellectual Property, University of Chinese Academy of Sciences, Beijing 100190, China

5. College of Economics and Management, South China Agricultural University, Guangzhou 510642, China

6. Research Institute of Rural Development of Guangdong Province, Guangzhou 510642, China

Abstract

Data trading is important for optimizing the allocation of data elements. However, data can be easily copied, disseminated, or resold, leading to disorderly development in the data trading market, and raising the issue of data governance. Data trading involves various participants, while existing research lacks an understanding of participant interactions and strategy adoption, as well as determination of optimal strategies for the participants. To address these gaps and provide insights for the governance of data trading platforms, this paper proposes an evolutionary game model for the governance of data trading involving three parties: data suppliers, demanders, and trading platforms. Our findings reveal that data trading platforms choosing to govern, data suppliers choosing to innovate positively, and data demanders choosing not to resell can be achieved under certain conditions. We also find that an increase in the price of data trading or the number of transactions can weaken the effectiveness of platform governance and make data trading more difficult to govern. Additionally, the incentives for data innovation provided by the trading platform can significantly promote data suppliers to innovate data positively. However, when these incentives are too high, the platform may weaken its level of governance or even move towards non-governance. Increasing penalties for data resale weakens data demanders’ motivation to resell data, and a higher probability of data resale being reported lowers their motivation to do so. By examining the role of different participants in data trading, the model proposes ways to improve the efficiency and robustness of the data market while better protecting the interests of data traders.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3