A Testing and Evaluation Method for the Car-Following Models of Automated Vehicles Based on Driving Simulator

Author:

Zhang Yuhan1,Shao Yichang1,Shi Xiaomeng1ORCID,Ye Zhirui1

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing 211189, China

Abstract

The continuous advancement of connected and automated driving technologies has garnered considerable public attention regarding the safety and reliability of automated vehicles (AVs). Comprehensive and efficient testing is essential before AVs can be deployed on public roads. Current mainstream testing methods involve high costs in real-world settings and limited immersion in numerical simulations. To address these challenges and facilitate testing in mixed traffic scenarios involving both human-driven vehicles (HDVs) and AVs, we propose a testing and evaluation approach using a driving simulator. Our methodology comprises three fundamental steps. First, we systematically classify scenario elements by drawing insights from the scenario generation logic of the driving simulator. Second, we establish an interactive traffic scenario that allows human drivers to manipulate vehicles within the simulator while AVs execute their decision and planning algorithms. Third, we introduce an evaluation method based on this testing approach, validated through a case study focused on car-following models. The experimental results confirm the efficiency of the simulation-based testing method and demonstrate how car-following efficiency and comfort decline with increased speeds. The proposed approach offers a cost-effective and comprehensive solution for testing, considering human driver behavior, making it a promising method for evaluating AVs in mixed traffic scenarios.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Nanjing Science and Technology Program

Anhui Provincial Key R&D Program

Yangtze River Delta Collaborative Science and Technology Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3