Applications of Markov Decision Process Model and Deep Learning in Quantitative Portfolio Management during the COVID-19 Pandemic

Author:

Yue Han,Liu Jiapeng,Zhang Qin

Abstract

Whether for institutional investors or individual investors, there is an urgent need to explore autonomous models that can adapt to the non-stationary, low-signal-to-noise markets. This research aims to explore the two unique challenges in quantitative portfolio management: (1) the difficulty of representation and (2) the complexity of environments. In this research, we suggest a Markov decision process model-based deep reinforcement learning model including deep learning methods to perform strategy optimization, called SwanTrader. To achieve better decisions of the portfolio-management process from two different perspectives, i.e., the temporal patterns analysis and robustness information capture based on market observations, we suggest an optimal deep learning network in our model that incorporates a stacked sparse denoising autoencoder (SSDAE) and a long–short-term-memory-based autoencoder (LSTM-AE). The findings in times of COVID-19 show that the suggested model using two deep learning models gives better results with an alluring performance profile in comparison with four standard machine learning models and two state-of-the-art reinforcement learning models in terms of Sharpe ratio, Calmar ratio, and beta and alpha values. Furthermore, we analyzed which deep learning models and reward functions were most effective in optimizing the agent’s management decisions. The results of our suggested model for investors can assist in reducing the risk of investment loss as well as help them to make sound decisions.

Funder

National Planning Office of Philosophy and Social Science

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference74 articles.

1. Learning How to Drive in a Real World Simulation with Deep Q-Networks;Wolf;Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV),2017

2. Mastering Complex Control in Moba Games with Deep Reinforcement Learning;Ye;Proceedings of the AAAI Conference on Artificial Intelligence,2020

3. Mastering the game of Go without human knowledge

4. Energy and Performance Trade-Off Optimization in Heterogeneous Computing via Reinforcement Learning

5. Commission Fee Is Not Enough: A Hierarchical Reinforced Framework for Portfolio Management;Wang;arXiv,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3