Initial Work on the Development of a Hardware-Based Gradient Descent Trained Expert System

Author:

Ahmed Fateen,Straub Jeremy

Abstract

Prior work has introduced a form of explainable artificial intelligence that is able to precisely explain, in a human-understandable form, why it makes decisions. It is also able to learn to make better decisions without potentially learning illegal or invalid considerations. This defensible system is based on fractional value rule-fact expert systems and the use of gradient descent training to optimize rule weightings. This software system has demonstrated efficacy for many applications; however, it utilizes iterative processing and thus does not have a deterministic completion time. It also requires comparatively expensive general-purpose computing hardware to run on. This paper builds on prior work in the development of hardware-based expert systems and presents and assesses the efficacy of a hardware implementation of this system. It characterizes its performance and discusses its utility and trade-offs for several application domains.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3