A survey of AI in operations management from 2005 to 2009

Author:

Kobbacy Khairy A.H.,Vadera Sunil

Abstract

PurposeThe use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence, the purpose of this paper is to present a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research.Design/methodology/approachThe paper builds upon our previous survey of this field which was carried out for the ten‐year period 1995‐2004. Like the previous survey, it uses Elsevier's Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case‐based reasoning (CBR), fuzzy logic (FL), knowledge‐Based systems (KBS), data mining, and hybrid AI in the four application areas are identified.FindingsThe survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research.Originality/valueThis is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3