Iron Sulfate (FeSO4) Improved Physiological Attributes and Antioxidant Capacity by Reducing Oxidative Stress of Oryza sativa L. Cultivars in Alkaline Soil

Author:

Saleem Ammara,Zulfiqar Asma,Ali BaberORCID,Naseeb Manal AhmedORCID,Almasaudi Arwa Saad,Harakeh SteveORCID

Abstract

Rice ranks second among cereals in dietary uses around the world. Rice is deficient in iron (Fe), and these are important micronutrients for infants, men, and women. Fortification of rice with iron would help to minimize nutrient deficiency disorders among humans. The current study aims to introduce nutrient-rich rice. The effects of iron on germination, growth, photosynthetic pigment, antioxidant activity, and reduction of oxidative stress were investigated in four Oryza sativa L. cultivars. O. sativa of four different cultivars (Basmati-515, PK-386, KSK-133, and Basmati-198) were grown under five treatments (100, 200, 300, 400, and 500 mM) of iron sulphate (FeSO4) in soil of pH 7.5, along with control, by using six replicates. The result revealed that Fe treatment significantly affected seed germination percentage, plant growth parameters, biomass, photosynthetic pigments (chl a, chl b, total chlorophyll, and carotenoids), antioxidant enzymatic and non-enzymatic activity, and reduced oxidative stress. The findings also showed that Fe application reduced the oxidative stress including malondialdehyde content and hydrogen peroxide, by increasing the antioxidant enzymatic activity, i.e., catalase, ascorbate peroxidase, superoxide dismutase, peroxidase, glutathione peroxidase, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), and non-enzymatic antioxidant compounds (proline, amino acid, total soluble protein, phenolics, flavonoids, reducing-non-reducing sugar, and carbohydrates) in all cultivars of O. sativa. Furthermore, FeSO4 induced a significant increase in proline, free amino acid, and total carbohydrates in the leaves of all O. sativa cultivars, but Basmati-198 showed the significantly highest content by 169, 88, and 110%, respectively, at concentration of 500 mM. The present research work showed that soil application of FeSO4 improved the seed germination, plant growth, and antioxidants enzymatic and non-enzymatic activity, denatured the ROS (reactive oxygen species) in alkaline soil. In order to understand the underlying mechanisms, long-term field investigations should be carried out at the molecular level to examine patterns of iron uptake and plant growth.

Funder

Institutional Fund projects

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3