Aerodynamic Force and Aeroelastic Response Characteristics Analyses for the Galloping of Ice-Covered Four-Split Transmission Lines in Oblique Flows

Author:

Chen ZhaoqingORCID,Cai Weijie,Su Jin,Nan Bo,Zeng Cong,Su NingORCID

Abstract

In order to study the galloping mechanism of ice-covered four-split transmission lines in oblique flows, the aerodynamic forces and aero-elastic response characteristics of the crescent-shaped four-split ice-covered transmission lines are investigated through wind tunnel tests on rigid and aero-elastic models. According to Den Hartog and Nigel’s galloping theories, the damping coefficients are calculated based on the experimental data. The results show that the crescent-shaped ice-covered four-split transmission lines usually suffer from torsional galloping. Furthermore, based on the aero-elastic wind tunnel data, the galloping is characterized by an elliptical trajectory, negative damping ratio, and a negative strain at hanging position. In addition, the galloping appears to be more prone to occur under oblique flows, with a larger galloping amplitude and a lower critical wind speed. This might be because an out-of-plane vibration of the third-order mode is excited at a lower wind speed, leading to a coupled resonance between in-plane and out-of-plane vibrations at the third-order mode with a frequency ratio of 1:1. The experimental results in this paper can also be used to verify the fluid-structure interaction simulation method of ice-covered transmission lines.

Funder

Key Research and Development Plan of Jilin Science and Technology Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3