A Demand Response Transaction Method for Integrated Energy Systems with a Trigonometric Membership Function-Based Uncertainty Model of Costumers’ Responsive Behaviors

Author:

Wu Zhuochao,Qian Weixing,Ji Zhenya

Abstract

As an important regulation tool for power systems, demand response can greatly improve system flexibility and economy. However, when an integrated energy system with a large number of flexible loads is aggregated for a demand response transaction, the uncertainty in the amount of the load response should be considered. Therefore, a demand response transaction model for an integrated energy system that considers the uncertainty of customer demand responses is proposed in this paper. We first analyze the uncertainty of incentive-based demand responses. Next, we investigate the relationship between the incentive level and the fluctuation of customer response volume. The flexible loads are classified into curtailable loads, translatable loads, and replaceable loads. Fuzzy variables are then used to represent the response volume of users, and a trigonometric membership function is used to represent the degree of uncertainty in the response volume of different flexible loads. Finally, the objective functions and chance constraints containing fuzzy variables are converted into explicit equivalence classes for solving. In the case study, the impact of the uncertainty of the user response volume on the revenue of each transaction entity and the impact of the fuzzy chance constraint confidence level on the response revenue are investigated. The results show that the revenue of each transaction entity decreases to a certain extent under the consideration of the uncertainty of the user response volume; the social welfare of the whole transaction increases as the confidence level of the chance constraint changes from high to low.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3