Evaluation of the Structural Performance of Low Carbon Concrete

Author:

Nukah Promise D.ORCID,Abbey Samuel J.ORCID,Booth Colin A.ORCID,Oti JonathanORCID

Abstract

Evaluation of the effect of embodied carbon reduction using an optimized design section for a ground beam, use of supplementary cementitious materials, and replacement of normal aggregate with light weight aggregate on the mechanical properties of low-carbon concrete was carried out. A creep coefficient of 0.019 was estimated for a 365-day period on a change in section from 1 to 0.6 m2 on a proposed trapezoidal section for ground beam, which showed a negligible difference when compared to the normal rectangular section owing to a reduction in embodied carbon due to the associated reduction in concrete volume and reinforcement. Training of 81 low-carbon concrete data sets in MATLAB using artificial neural network for 100% cement replacement with ground granular base slag indicates good performance with a mean square error of 0.856. From the study, it was observed that the extent of carbonation depth in concrete evidenced the measure of compressive strength formation based on the specific surface area of the binder and the water absorption rate of the aggregate, while enhancing the flexural strength of the low-carbon concrete required a cement-to-supplementary-cementitious-material ratio of 0.8.

Funder

University of the West of England, Bristol Funded PhD Studentship

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3