Effect of Data Augmentation Using Deep Learning on Predictive Models for Geopolymer Compressive Strength

Author:

Nguyen Ho Anh Thu1,Pham Duy Hoang2ORCID,Ahn Yonghan3ORCID

Affiliation:

1. Department of Smart City Engineering, ERICA Campus, Hanyang University, 55 Hanyangdaehak-ro, Gyeonggi-do, Ansan 15588, Republic of Korea

2. Center for Ai Technology in Construction, Hanyang University, Gyeonggi-do, Ansan 15588, Republic of Korea

3. Department of Architecture Engineering, Hanyang University ERICA Campus, Gyeonggi-do, Ansan 15588, Republic of Korea

Abstract

In recent years, machine learning models have become a potential approach in accurately predicting the concrete compressive strength, which is essential for the real-world application of geopolymer concrete. However, the precursor system of geopolymer concrete is known to be more heterogeneous compared to Ordinary Portland Cement (OPC) concrete, adversely affecting the data generated and the performance of the models. To its advantage, data enrichment through deep learning can effectively enhance the performance of prediction models. Therefore, this study investigates the capability of tabular generative adversarial networks (TGANs) to generate data on mixtures and compressive strength of geopolymer concrete. It assesses the impact of using synthetic data with various models, including tree-based, support vector machines, and neural networks. For this purpose, 930 instances with 11 variables were collected from the open literature. In particular, 10 variables including content of fly ash, slag, sodium silicate, sodium hydroxide, superplasticizer, fine aggregate, coarse aggregate, added water, curing temperature, and specimen age are considered as inputs, while compressive strength is the output of the models. A TGAN was employed to generate an additional 1000 data points based on the original dataset for training new predictive models. These models were evaluated on real data test sets and compared with models trained on the original data. The results indicate that the developed models significantly improve performance, particularly neural networks, followed by tree-based models and support vector machines. Moreover, data characteristics greatly influence model performance, both before and after data augmentation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3