Impacts of Certain Meteorological Factors on Atmospheric NO2 Concentrations during COVID-19 Lockdown in 2020 in Wuhan, China

Author:

Ju Tianzhen,Geng Tunyang,Li BingnanORCID,An Bin,Huang Ruirui,Fan Jiachen,Liang Zhuohong,Duan Jiale

Abstract

The concentration of nitrogen dioxide (NO2) in the air is one of the important indexes for evaluating air quality. At the beginning of 2020, a COVID-19 outbreak suddenly hit Wuhan, China. To effectively control the epidemic, Wuhan was put under a 76-day lockdown, during which we collected tropospheric column amounts in the atmosphere and NO2 concentrations measured at ground monitoring stations, and we reviewed the ground NO2 concentrations in 2019 and the tropospheric NO2 concentrations between 2012 and 2019. Using the random forest (RF) model, we predicted the impact of the tropospheric NO2 concentration during the lockdown period without the occurrence of the COVID-19 epidemic and analyzed the impact of multiple certain meteorological factors on tropospheric and ground NO2 concentrations. The results showed that the tropospheric and ground NO2 concentrations were reduced by 11.04~53.36% and 21.96~65.04%, respectively. The main factors affecting the tropospheric NO2 concentration were wind velocity, land surface temperature, surface lifted index, precipitable water volume and tropospheric relative humanity. The main factors affecting the ground NO2 concentration were tropospheric relative humanity, surface lifted index, land surface temperature and tropospheric temperature. The development of different emission reduction and control measures under different meteorological conditions and the formulation of more refined policies will play positive roles in improving the efficiency of air pollution control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3