Impacts of Spatial Heterogeneity and Temporal Non-Stationarity on Intensity-Duration-Frequency Estimates—A Case Study in a Mountainous California-Nevada Watershed

Author:

Ren HuiyingORCID,Hou Z. JasonORCID,Wigmosta Mark,Liu YingORCID,Leung L. Ruby

Abstract

Changes in extreme precipitation events may require revisions of civil engineering standards to prevent water infrastructures from performing below the designated guidelines. Climate change may invalidate the intensity-duration-frequency (IDF) computation that is based on the assumption of data stationarity. Efforts in evaluating non-stationarity in the annual maxima series are inadequate, mostly due to the lack of long data records and convenient methods for detecting trends in the higher moments. In this study, using downscaled high resolution climate simulations of the historical and future periods under different carbon emission scenarios, we tested two solutions to obtain reliable IDFs under non-stationarity: (1) identify quasi-stationary time windows from the time series of interest to compute the IDF curves using data for the corresponding time windows; (2) introduce a parameter representing the trend in the means of the extreme value distributions. Focusing on a mountainous site, the Walker Watershed, the spatial heterogeneity and variability of IDFs or extremes are evaluated, particularly in terms of the terrain and elevation impacts. We compared observations-based IDFs that use the stationarity assumption with the two approaches that consider non-stationarity. The IDFs directly estimated based on the traditional stationarity assumption may underestimate the 100-year 24-h events by 10% to 60% towards the end of the century at most grids, resulting in significant under-designing of the engineering infrastructure at the study site. Strong spatial heterogeneity and variability in the IDF estimates suggest a preference for using high resolution simulation data for the reliable estimation of exceedance probability over data from sparsely distributed weather stations. Discrepancies among the three IDFs analyses due to non-stationarity are comparable to the spatial variability of the IDFs, underscoring a need to use an ensemble of non-stationary approaches to achieve unbiased and comprehensive IDF estimates.

Funder

U.S. Department of Defense

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3