Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies

Author:

Omar Abdullah1,Almomani Fares1ORCID,Qiblawey Hazim1ORCID,Rasool Kashif2

Affiliation:

1. Chemical Engineering Department, Qatar University, Doha P.O. Box 2713, Qatar

2. Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar

Abstract

Nitrogen-rich wastewater is a major environmental issue that requires proper treatment before disposal. This comprehensive overview covers biological, physical, and chemical nitrogen removal methods. Simultaneous nitrification–denitrification (SND) is most effective in saline water when utilizing both aerobic and anoxic conditions with diverse microbial populations for nitrogen removal. Coupling anammox with denitrification could increase removal rates and reduce energy demand. Suspended growth bioreactors effectively treated diverse COD/N ratios and demonstrated resilience to low C/N ratios. Moving biofilm bioreactors exhibit reduced mortality rates, enhanced sludge–liquid separation, increased treatment efficiency, and stronger biological structures. SND studies show ≥90% total nitrogen removal efficiency (%RETN) in diverse setups, with Defluviicoccus, Nitrosomonas, and Nitrospira as the main microbial communities, while anammox–denitrification achieved a %RETN of 77%. Systems using polyvinyl alcohol/sodium alginate as a growth medium showed a %RETN ≥ 75%. Air-lift reflux configurations exhibited high %RETN and %RENH4, reducing costs and minimizing sludge formation. Microwave pretreatment and high-frequency electric fields could be used to improve the %RENH4. Adsorption/ion exchange, membrane distillation, ultrafiltration, and nanofiltration exhibit promise in industrial wastewater treatment. AOPs and sulfate-based oxidants effectively eliminate nitrogen compounds from industrial wastewater. Tailoring proposed treatments for cost-effective nitrogen removal, optimizing microbial interactions, and analyzing the techno-economics of emerging technologies are crucial.

Funder

QNRF

Qatar National Library

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3