Nitrification–Autotrophic Denitrification Using Elemental Sulfur as an Electron Donor in a Sequencing Batch Reactor (SBR): Performance and Kinetic Analysis

Author:

Corbalán Mario1,Da Silva Cristopher1,Barahona Andrea1ORCID,Huiliñir César2,Guerrero Lorna1

Affiliation:

1. Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile

2. Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago 7620086, Chile

Abstract

Simultaneous nitrification and autotrophic denitrification (SNAD) has received attention as an efficient biological nitrogen removal alternative. However, SNAD using elemental sulfur (S0) has scarcely been studied. Thus, the main objective of this research was to study the behavior of a simultaneous nitrification–autotrophic denitrification operation in a sequential batch reactor (SNAD-SBR) at a lab scale using S0 as an electron donor, including its kinetics. Two-scale reactors were operated at lab scales in cycles for 155 days with an increasing nitrogen loading rate (NLR: 0.0296 to 0.0511 kg N-NH4+/m3/d) at 31 °C. As a result, simultaneous nitrification–autotrophic denitrification using S0 as an electron donor was performed successfully, with nitrification efficiency of 98.63% and denitrification efficiency of 44.9%, with autotrophic denitrification as the limiting phase. The kinetic model adjusted for ammonium-oxidizing bacteria (AOB) was the Monod-type kinetic model (µmax = 0.791 d−1), while, for nitrite-oxidizing bacteria (NOB), the Haldane-type model was employed (µmax = 0.822 d−1). For denitrifying microorganisms, the kinetic model was adjusted by a half order (k1/2v = 0.2054 mg1/2/L1/2/h). Thus, we concluded that SNAD could be feasible using S0 as an electron donor, with kinetic behavior similar to that of other processes.

Funder

ondecyt-ANID Chilean Project

Multidisciplinary-USM Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3