Enhancing Surface Fault Detection Using Machine Learning for 3D Printed Products

Author:

Kadam Vaibhav,Kumar SatishORCID,Bongale Arunkumar,Wazarkar Seema,Kamat PoojaORCID,Patil Shruti

Abstract

In the era of Industry 4.0, the idea of 3D printed products has gained momentum and is also proving to be beneficial in terms of financial and time efforts. These products are physically built layer-by-layer based on the digital Computer Aided Design (CAD) inputs. Nonetheless, 3D printed products are still subjected to defects due to variation in properties and structure, which leads to deterioration in the quality of printed products. Detection of these errors at each layer level of the product is of prime importance. This paper provides the methodology for layer-wise anomaly detection using an ensemble of machine learning algorithms and pre-trained models. The proposed combination is trained offline and implemented online for fault detection. The current work provides an experimental comparative study of different pre-trained models with machine learning algorithms for monitoring and fault detection in Fused Deposition Modelling (FDM). The results showed that the combination of the Alexnet and SVM algorithm has given the maximum accuracy. The proposed fault detection approach has low experimental and computing costs, which can easily be implemented for real-time fault detection.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3