Abstract
One of the main energy sources utilized to produce power is coal. Due to the lack of combustion enhancement, the main issue with coal-based power plants is that they produce significant amount of pollutants. The major problem of slagging formation within the boiler; it sticks to the water tube walls, superheater, and reheater. Slagging might decrease the heat transferred from the combustion area to the water or steam inside the tubes, increasing the amount of coal and extra air. The abrupt fall of slag on the tube surface into the water-filled seal-trough at the bottom of the furnace might occasionally cause boiler explosions. In order to maximize heat transmission to the water and steam tubes by reducing or eliminating slag formation on the tube surface, the work presented here proposes an appropriate computational fluid dynamics (CFD) technique with a genetic algorithm (GA) integrated with conventional supercritical power plant operation. Coal usage and surplus air demand are both decreased concurrently. By controlling the velocity and temperatures of primary air and secondary air, the devised technique could optimize the flue gas temperature within the furnace to prevent ash from melting and clinging to the water and steam tube surfaces. Heat transmission in the furnace increased from 5945.876 W/m2 to 87,513.9 W/m2 as a result of the regulated slag accumulation. In addition to reducing CO2 emissions by 8.55 tonnes per hour and saving close to nine tonnes of coal per hour, the boiler’s efficiency increased from 82.397% to 85.104%.
Funder
School of Mechanical Engineering
Vellore Institute of Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference35 articles.
1. Bureau of Energy Efficiency (2003). Fuels and Combustion, Book no. 2: Energy Efficiency in Thermal Utilities.
2. Simulation study on data of coal fired power plant boiler experiment with cold state;Wang;Energy Res. Util.,2007
3. Coal oxycombustion power plant optimization using first principles and surrogate boiler models;Dowling;Energy Procedia,2014
4. Development of a numerical model for co-combustion of the blended solidwaste fuel in the grate boiler;Zhou;Chem. Eng. J.,2021
5. Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems;Niu;ISA Trans.,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献