Multiobjective optimization of heat recovery steam generator in a combined cycle power using genetic algorithm

Author:

Mehrpanahi Abdollah1,Akbari Vakilabadi Moslem2,Nikbakht Naserabad Sadegh3,Ahmadi M. H.4ORCID

Affiliation:

1. Department of Mechanical Engineering Shahid Rajaee Teacher Training University Tehran Iran

2. Faculty of Naval Aviation Malek Ashtar University of Technology Tehran Iran

3. Energy Engineering Department, Faculty of Gas & Petroleum Yasouj University Gachsaran Iran

4. Department of Mechanical Engineering Shahrood University of Technology Shahrood Iran

Abstract

AbstractDue to the increasing demand for electrical energy, efforts to increase the thermal efficiency of the steam and gas power plants have led to extensive reform in these cycles. One of these common reforms is employing a conventional combined gas‐steam cycle. In combined cycle power plants that are built to produce power, a significant portion of the input energy is lost. In this research to achieve the thermodynamic properties of a combined cycle power plant after modeling the cycle and determining the cycle potential independent variables, multiobjective optimization by imposing restrictions on cost functions and changing them concerning exergy efficiency has been analyzed. The results show that increasing the parameters of superheated temperature, pinch point temperature difference, pump exhaust pressure, and condenser inlet flow rate improves the system performance and increases exergy efficiency. It is shown by two‐objective optimization that when costs are increased up to 40%, exergy efficiency is increased, and when an increase is more than 40% repeated results would be obtained. Applying costs lower than 5% is not considered according to software limitations. Also, the results show that it is possible to increase exergy efficiency up to 79.7% with a 40% investment cost.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3