Abstract
The global transition to electric vehicles and renewable energy systems continues to gain support from governments and investors. As a result, the demand for electric energy storage systems such as lithium-ion batteries (LIBs) has substantially increased. This is a significant motivator for reassessing end-of-life strategies for these batteries. Most importantly, a strong focus on transitioning from landfilling to an efficient recycling system is necessary to ensure the reduction of total global emissions, especially those from LIBs. Furthermore, LIBs contain many resources which can be reused after recycling; however, the compositional and component complexity of LIBs poses many challenges. This study focuses on the recycling and reusing of copper (Cu) and aluminum (Al) foils, which are the anode and cathode current-collectors (CCs) of LIBs. For this purpose, methods for the purification of recycled Cu and Al CCs for reusing in LIBs are explored in this paper. To show the effectiveness of the purification, the recycled CCs are used to make new LIBs, followed by an investigation of the performance of the made LIBs. Overall, it seems that the LIBs’ CCs can be reused to make new LIBs. However, an improvement in the purification method is still recommended for future work to increase the new LIB cycling.
Funder
Schaeffler Company and the University of Akron
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference49 articles.
1. Bibra, E., Connelly, E., Gorner, M., and Paoli, L. (2022, February 20). Global EV Outlook 2021. International Energy Agency. Available online: https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf.
2. Recycling of lithium-ion batteries: Recent advances and perspectives;Huang;J. Power Sources,2018
3. Kong, L., Li, C., Jiang, J., and Pecht, M.G. (2018). Li-Ion Battery Fire Hazards and Safety Strategies. Energies, 11.
4. Review on the growing concern and potential management strategies of waste lithium-ion batteries Resources;Winslow;Conserv. Recycl.,2018
5. A material flow of lithium batteries in Taiwan;Chang;J. Hazard. Mater.,2009
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献