Copper ferrite obtaining from microelectronics waste

Author:

Novikov Alexander S.ORCID,Sudarev Evgeniy A.,Mostovshchikov Andrei V.

Abstract

Relevance. The need to develop new methods for metal waste disposal. This direction, with the participation of various intensifying influences, refers to resource-saving, technological, minimizing the volume of capital costs for raw materials, production and subsequent sale. Aim. To obtain copper ferrite from iron and copper waste of microelectronics. Copper ferrite is a useful and highly demanded product in this branch of domestic industry, especially now, when many sanctions have been imposed on our country, including in terms of microelectronics. To study its magnetic properties and draw a conclusion about the possibility of its application. Objects. Samples of iron and copper waste in the form of plates, wire and shavings. Methods. Volumetric analysis, electron microscopy, X-ray phase analysis, study of magnetic susceptibility. Results. The authors have produced finely dispersed iron (III) oxide from iron-containing microelectronics waste. This oxide is used in electrical engineering as part of high-voltage resistors for grounding the neutral of networks, lithium-ion batteries, as a carrier of analog and digital information. In the radio engineering industry it is used as part of low-voltage resistors, high-frequency chokes, small-sized pulse transformers. The authors produced finely dispersed copper (II) oxide from copper-containing waste. This oxide is used in production of phosphors and dry batteries – in batteries with liquid cells as a cathode, with lithium as an anode and dioxalane mixed with lithium perchlorate as an electrolyte. In addition, it finds application as a p-type semiconductor, since it has a narrow bandgap of 1.2 eV, and manufacturing photovoltaic cells in solar panels. Copper ferrite was synthesized from the obtained oxides by sintering. Rings made of such alloy serve as a core in transformers. The part increases the magnetic field strength by several thousand times, making the devices transmit more power than they could with a non-ferrite core. Ferrite ring cores are found not only in transformers, but also in other electronics (e.g. magnetic memory).

Publisher

National Research Tomsk Polytechnic University

Subject

Management, Monitoring, Policy and Law,Economic Geology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Fuel Technology,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3