Abstract
Phylloxera is one of the most invasive and widespread insects in viticulture. An increase in populations feeding on leaves and/or roots of formeR + Ly resistant grapevines has been observed, but information on leaf and whole plant phylloxera infestation effects is lacking. We monitored the water and carbon metabolism of vines (one rootstock x scion combination) inoculated with insects’ eggs on leaves (L) or both leaves and roots (R+L). Nonstructural carbohydrates (NSC) in infested and noninfested tissue of different organs and plant biomass were measured at the end of the experiment. At the peak of the biotic stress treatment, the plants reduced transpiration by about 30% compared to control, while photosynthesis remained unaffected. Lower soluble NSC were measured in infested than in the nearby noninfested tissue of both L and R+L groups, suggesting sugar consumption by the insect, while infested roots increased starch content by fivefold. NSC were depleted in noninfested roots of R+L plants as well, giving strength to the hypothesis of intense metabolites translocation in favor of the insect. A more distinct physiological depression in R+L vines compared to L was highlighted, even if the total biomass reduction was more marked in L plants. Our preliminary results suggest that the insect reprograms plant metabolism stimulating a more conservative water use, while competing with the host plant for carbon resources. Further studies should validate current results and quantify the NSC invested in the plant’s defense against the pest.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献