Abstract
Abstract
Background
Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measured non-structural carbohydrates and biomass of different plant organs to assess the stress-induced responses at the root, stem, and leaf level. Effects of watering on root infestation were also addressed.
Results
Higher root infestation was observed in drought-stressed plants compared to well-watered. The drought had a significant impact on most of the measured functional traits. Phylloxera further influenced vines water and carbon metabolism and enforced the sink strength of the roots by stimulating photosynthates translocation. The insect induced carbon depletion, reprogramed vine development, while preventing biomass compensation. A synergic effect of biotic-abiotic stress could be detected in several physiological and morphological traits.
Conclusions
Our results indicate that events of water shortage favour insects’ feeding damage and increase the abundance of root nodosities. Root phylloxera infestation imposes a considerable stress to the plants which might exacerbate the negative effects of drought.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63:3523–44.
2. Bates RT, English-Loeb G, Dunst RM, Taft T, Lakso A. The interaction of phylloxera infection, rootstock and irrigation on young Concord grapevine growth. Vitis. 2001;40:225–8.
3. Bauerle TL, Eissenstat DM, Granett J, Gardner DM, Smart DR. Consequences of insect herbivory on grape fine root systems with different growth rates. Plant Cell Environ. 2007;30:786–95.
4. Benheim D, Rochfort S, Robertson E, Potter ID, Powell KS. Grape phylloxera (Daktulosphaira vitifoliae) - a review of potential detection and alternative management options. Ann Appl Biol. 2012;161:91–115.
5. Blanchfield AL, Robinson SA, Renzullo LJ, Powell KS. Phylloxera-infested grapevines have reduced chlorophyll and increased photoprotective pigment content: can leaf pigment composition aid pest detection? Funct Plant Biol. 2006;33:507–14.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献