RUL Prediction of Rolling Bearings Based on Multi-Information Fusion and Autoencoder Modeling

Author:

Guan Peng1,Zhang Tianrui1,Zhou Lianhong1

Affiliation:

1. School of Mechanical Engineering, Shenyang University, Shenyang 110044, China

Abstract

As an important part of industrial equipment, the safe and stable operation of rolling bearings is an important guarantee for the performance of mechanical equipment. Aiming at the problem that it is difficult to characterize the running state of rolling bearings, this paper mainly analyzes and processes the vibration signals of rolling bearings, extracts and fuses multi-information entropy, and monitors the running state of rolling bearings and predicts the remaining useful life prediction (RUL) through test verification. Firstly, in view of the difficulty in characterizing the bearings running state characteristics, a rolling bearings running state monitoring method based on multi-information entropy fusion and denoising autoencoder (DAE) was proposed to extract the multi-entropy index features of vibration signals to improve the accuracy of feature extraction, and to solve the problem of not obvious information representation of a single feature indicator and missing information in the feature screening process. Secondly, in view of the problems of low prediction accuracy and poor robustness and generalization in traditional RUL models, a rolling bearings RUL model combining convolutional autoencoder (CAE) and bidirectional long short-term memory network (BiLSTM) was proposed. The introduction of convolution operation made CAE have the feature of weight sharing, reducing the complexity of the model. Finally, the XJTU-SY data set was used to verify the constructed model. The results show that the condition monitoring model established in this paper can accurately evaluate the running state of the rolling bearing and accurately locate the failure time. At the same time, the residual life prediction model can realize the residual life prediction of most data sets, and has good accuracy and robustness.

Funder

Basic Scientific Research project of Colleges and Universities of Liaoning Province Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3