A Normal Behavior-Based Condition Monitoring Method for Wind Turbine Main Bearing Using Dual Attention Mechanism and Bi-LSTM

Author:

Xiao Xiaocong,Liu Jianxun,Liu Deshun,Tang Yufei,Qin Shigang,Zhang Fan

Abstract

As clean and low-carbon energy, wind energy has attracted the attention of many countries. The main bearing in the transmission system of large-scale wind turbines (WTs) is the most important part. The research on the condition monitoring of the main bearing has received more attention from many scholars and the wind industry, and it has become a hot research topic. The existing research on the condition monitoring of the main bearing has the following drawbacks: (1) the existing research assigns the same weight to each condition parameter variable, and the model extracts features indiscriminately; (2) different historical time points of the condition parameter variable are given the same weight, and the influence degree of different historical time points on the current value is not considered; and (3) the existing literature does not consider the operating characteristics of WTs. Different operating conditions have different control strategies, which also determine which condition parameters are artificially controlled. Therefore, to solve the problems above, this paper proposes a novel method for condition monitoring of WT main bearings by applying the dual attention mechanism and Bi-LSTM, named Dual Attention-Based Bi-LSTM (DA-Bi-LSTM). Specifically, two attention calculation modules are designed to extract the important features of different input parameters and the important features of input parameter time series, respectively. Then, the two extracted features are fused, and the Bi-LSTM building block is utilized to perform pre-and post-feature extraction of the fused information. Finally, the extracted features are applied to reconstruct the input data. Extensive experiments verify the performance of the proposed method. Compared with the Bi-LSMT model without adding an attention module, the proposed model achieves 19.78%, 2.17%, and 18.92% improvement in MAE, MAPE, and RMSE, respectively. Compared with the Bi-LSTM model which only considers a single attention mechanism, the proposed model achieves the largest improvement in MAE and RMSE by 28.84% and 30.37%. Furthermore, the proposed model has better stability and better interpretability of the monitoring process.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Hunan Province, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3