Optimized Scheme for Accelerating the Slagging Reaction and Slag–Metal–Gas Emulsification in a Basic Oxygen Furnace

Author:

Yin ZichaoORCID,Lu Jianfei,Li LinORCID,Wang Tong,Wang Ronghui,Fan Xinghua,Lin Houkai,Huang Yuanshun,Tan DapengORCID

Abstract

Basic oxygen furnace (BOF) steelmaking is widely used in the metallurgy field. The slagging reaction is a necessary process that oxidizes C, Mn, Si, P, S, and other impurities and therefore directly affects the quality of the resultant steel. Relevant research has suggested that intensifying the stirring effect can accelerate the slagging reaction and that the dynamic characteristics of the top blow are the key factor in exploring the related complex physical and chemical phenomena. To address the issue, the standard k-ω turbulence model and level-set method were adopted in the present work and a fluid dynamics model was developed for a BOF. Accordingly, the slag–metal–gas emulsion interaction and stirring effect were investigated, and the interference mechanism of a multi-nozzle supersonic coherent jet was revealed. Finally, a self-adjustment method based on fuzzy control is proposed for the oxygen lance. The results indicate that the transfer efficiency of jet kinetic energy at the gas–liquid interface is the critical factor for the slagging reaction and that multi-nozzle oxygen lances with a certain twisted angle have important advantages with respect to stirring effects and splashing inhibition. The fuzzy control method predicts that the optimal nozzle twist angle is within the range of 7.2° to 7.8°. The results presented herein can provide theoretical support and beneficial reference information for BOF steelmaking.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3