Tentative Investigations on Reducing the Edge Effects in Pre-Polishing the Optics

Author:

Ke Xiaolong,Qiu Lei,Wang ChunjinORCID,Wang Zhenzhong

Abstract

The material removal depth in the pre-polishing stage of the precision optics is usually tens of microns to remove the subsurface damage and grinding marks left by the previous grinding process. This processing of the upstand edge takes a large part of the time at this stage. The purpose of this paper is to develop a method that can reduce the edge effect and largely shorten the processing time of the pre-polishing stage adopting the semirigid (SR) bonnet. The generation of the edge effect is presented based on the finite element analysis of the contact pressure at the edge zone firstly. Then, some experimentations on the edge effect are conducted, and the results proved that the SR bonnet tool can overhang the workpiece edge in the pre-polishing stage to reduce the width and height of the upstand edge to largely shorten the subsequent processing time of it. In addition, there exists a perfect overhang ratio, which generates the upstand edge with the smallest width and height, with no damage to the bonnet tool in the meantime. In addition, one combination of the pre-polishing parameters is concluded according to this method, which can be safely adopted in practical process.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3