Rapid polishing process for the x ray reflector

Author:

Yin Lianmin12ORCID,Lin Zhifan12,Hu Hao12,Dai Yifan12

Affiliation:

1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology

2. Hu’nan Key Laboratory of Ultra-precision Machining Technology

Abstract

X ray mirrors are symmetrical workpieces along the length and width and are widely used in various optical systems. Unlike the center-symmetric circular mirror, it is more difficult to suppress the edge effect of the x ray mirror during the polishing process, which greatly limits the polishing accuracy and polishing efficiency. Based on this, the unique edge effect of x ray mirrors is investigated in depth in this paper. First, the causes and distribution laws of the edge effect of the x ray mirror were obtained by analyzing the inherent structure of the computer controlled optical surface (CCOS) and the motion trajectory of the polishing tool. Second, a mathematical model was established based on the material removal states of different regions on the x ray mirror. Finally, a combined polishing process based on the influence function of different shaped tools is proposed and experimentally verified. The results show that the edge effect on the x ray mirror is significantly weakened and its surface errors peak to valley (PV) and RMS are increased by 21.5 times and 47.9 times, respectively. This indicates that the combined polishing process has a good suppression effect on the edge effect of the x ray mirror.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3