On the QKD Integration in Converged Fiber/Wireless Topologies for Secured, Low-Latency 5G/B5G Fronthaul

Author:

Zavitsanos DimitrisORCID,Ntanos Argiris,Giannoulis Giannis,Avramopoulos Hercules

Abstract

A research contribution focusing on the Quantum Key Distribution (QKD)-enabled solutions assisting in the security framework of an optical 5G fronthaul segment is presented. We thoroughly investigate the integration of a BB84-QKD link, operating at telecom band, delivering quantum keys for the Advanced Encryption Standard (AES)-256 encryption engines of a packetized fronthaul layer interconnecting multiple 5G terminal nodes. Secure Key Rate calculations are studied for both dedicated and shared fiber configurations to identify the attack surface of AES-encrypted data links in each deployment scenario. We also propose a converged fiber-wireless scenario, exploiting a mesh networking extension operated by mmWave wireless links. In addition to the quantum layer performance, emphasis is placed on the strict requirements of 5G-oriented optical edge segments, such as the latency and the availability of quantum keys. We find that for the dark fiber case, secret keys can be distilled at fiber lengths much longer than the maximum fiber fronthaul distance corresponding to the round-trip latency barrier, for both P2P and P2MP topologies. On the contrary, the inelastic Raman scattering makes the simultaneous transmission of quantum and classical signals much more challenging. To counteract the contamination of noise photons, a resilient classical/QKD coexistence scheme is adopted. Motivated by the recent advancements in quantum technology roadmap, our analysis aims to introduce the QKD blocks as a pillar of the quantum-safe security framework of the 5G/B5G-oriented fronthaul infrastructure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐Party Quantum Key Distribution Using Variational Quantum Eigensolvers;Advanced Quantum Technologies;2023-10-26

2. Demonstration of QKD Integration into 5G Campus Network;2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM);2023-09-21

3. Key 6G Technologies;Security and Privacy Vision in 6G;2023-07-21

4. MEO satellite-to-ground Decoy-State QKD links realistic performance analysis;International Conference on Space Optics — ICSO 2022;2023-07-12

5. 100  Gbps quantum-secured and O-RAN-enabled programmable optical transport network for 5G fronthaul;Journal of Optical Communications and Networking;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3