100  Gbps quantum-secured and O-RAN-enabled programmable optical transport network for 5G fronthaul

Author:

Arabul Ekin,Oliveira Romerson D.,Emami Amin,Typos Stavros,Vrontos Constantinos,Wang RuiORCID,Nejabati Reza,Simeonidou Dimitra

Abstract

We have successfully demonstrated the first 5G open radio access network (O-RAN)-enabled and quantum-secured optical network solution and tested its performance in a 5G fronthaul use case. Our proposed solution is unique in a way that it combines a quantum key distribution (QKD)-compatible on-demand programmable 100 Gbps Ethernet encryptor with multi-tenant network operation while satisfying the stringent timing requirements of the 5G O-RAN with ultra-low pipeline latency. Moreover, our encryption cores provide the fastest reconfiguration speeds with the highest transmission capacity. By using dynamic reconfiguration technology, encryption schemes can be switched between Advanced Encryption Standard (AES) variations AES-256, AES-192, and AES-128 and Camellia-256, XOR, or no-encryption configurations in 16.7 ms for encryption and 24.1 ms for decryption. Furthermore, the key slicing functionality was introduced to our system, allowing users to have their separate key storages within the field programmable gate array and different key exchange schemes or refresh rates per client, where a secret key rate of 1.6 keys/s per client for less than 10 Gb of encrypted data could be provided. With encryption, the lowest system latency of 817.6 ns was achieved. Without encryption, the system latency could be as low as 667.2 ns. When our proposed system was tested in 5G fronthaul where our design was placed between a 5G radio unit and a 5G distributed unit/central unit, and the traffic between the 5G customer premises equipment and 5G core user plane function was transported and encrypted by our system over 100 Gbps, no significant impact on network latency on the millisecond scale was observed. Our system’s 10 Gbps fronthaul interface was stressed with a large Ethernet frame (1500B) at a rate of ≈9.8Gbps with 300,000 Internet Control Message Protocol pings, and less than 1% data loss was observed.

Funder

Government of the United Kingdom

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Reference21 articles.

1. Requirements and challenges of 5G cellular systems;Benisha,2016

2. Unconditional security of quantum key distribution and the uncertainty principle

3. 600-km repeater-like quantum communications with dual-band stabilization

4. 5G network slicing with QKD and quantum-safe security

5. Experimental demonstration of programmable 100 Gb/s SDN-enabled encryptors/decryptors for QKD networks;Arabul,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3