Experimental Study of Tool Wear in Electrochemical Discharge Machining

Author:

Bian JianxiaoORCID,Ma Baoji,Liu Xiaofeng,Qi Lijun

Abstract

Electrochemical discharge machining (ECDM) is an emerging special processing technology for non-conductive hard and brittle materials, but it may encounter the problem of tool wear due to its process characteristics, which affects the processing accuracy. In this study, in the non-machining state, the tungsten carbide spiral cathode with a diameter of 400 μm was selected to analyze the influencing mechanism of the process parameters on tool wear, and a suitable voltage range for the processing was obtained. The influence of the cathode’s loss behavior on the film formation time and the average current of spark discharge was discussed based on the current signal. The results show that the tool wear mainly appears from the bottom to the end and edge tip of the protrusion. Loss is mainly in the form of local material melting or gasification at high temperature. In addition, the loss may shorten the film formation time, but the effect on the average current of spark discharge is small.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Process capability of electrochemical discharge machining: A review;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-12-11

2. Self-adaptive micro-hole breakout detection in the electrochemical discharge drilling process based on CNN-BiLSTM;Journal of Manufacturing Processes;2023-10

3. Study on electrochemical discharge machining of small holes array on glass with ultrasonic vibrating tube electrode;The International Journal of Advanced Manufacturing Technology;2023-09-18

4. Surface Quality of Al2O3 Ceramic and Tool Wear in Diamond Wire Sawing Combined with Oil Film-Assisted Electrochemical Discharge Machining;Applied Sciences;2023-08-07

5. Critical review on tool wear and its significance on the µ-ECSM process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3