Simulation Analysis and Experimental Validation of Cathode Tool in Electrochemical Mill-Grinding of Ti6Al4V

Author:

Li Jie,Li Hansong,Hu Xiaoyun,Niu Shen,Xu Guoliang

Abstract

Electrochemical mill-grinding (ECMG) is an ideal technical means to achieve an efficient and precise machining of titanium alloy monolithic structural parts. In the rough ECMG process, the selection of a reasonable cutting depth can improve the machining efficiency of the rough machining. Adopting a reasonable cathode tool structure can achieve a higher precision in the formation of the rough surface, reduce the finishing allowance and tool wear of subsequent finishing. With this aim, the present research proposed a cathode tool with a reasonable structure. Simulation results showed that the designed cathode tool presented a good uniformity of the flow field in the machining gap, which resulted in a higher precision in the formation of the rough surface. For experimental validation, a larger cutting depth and a designed cathode tool was employed to carry out the rough and finish machining experiments on a Ti6Al4V titanium alloy. The experimental results show that a good flatness of the sidewall of the rough-machining groove was obtained by this scheme. Furthermore, the machining surface exhibited no flow marks, and rough machining accounted for 92.37% of total removal. Moreover, measurement of the micro-morphology, roughness and elemental composition of the machined surface, and the effects of different machining parameters on the surface quality of titanium alloys, were studied.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Analysis of Secondary Adhesion Wear Mechanism on Hard Machining of Titanium Aerospace Alloy

2. Low temperature superplasticity through grain refinement in Ti-6Al-4V by a novel route of quench-roll-recrystallise

3. On the characteristics of titanium alloys for the aircraftapplications;Singh;Mater. Today: Proc.,2017

4. Hydrides precipitation in Ti6Al4V titanium alloy used for airframemanufacturing;Baila;Bull. Pol. Acad. Sci. Tech.,2019

5. State of the Art in Beta Titanium Alloys for Airframe Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3