Flow field characteristics and experimental research on inner-jet electrochemical face grinding of SUS420J2 stainless steel

Author:

Wang Feng,He Yafeng,Wu Xiaokai,Kang Min

Abstract

AbstractElectrochemical grinding (ECG) is processed by the combination of dissolution and grinding. It is very suitable for the processing of difficult-to-cut stainless steel, but its processing performance is restricted by the matching effect of dissolution and grinding. In this work, the processing of the torus surfaces of the stainless steel shaver cap was taken as the research object. A flow field model including the through-hole structure and the rotation of the grinding head was proposed to optimize the flow field distribution and promote the uniform dissolution of materials. The flow field simulation results showed that the rotational flow formed by the high-speed rotation prolonged the electrolyte flow path and was not conducive to the discharge of electrolytic products, and the reasonable selection of the diameter and distribution of the through-hole could reduce the velocity difference. The effects of rotational speed, feed rate, and inlet pressure on the flatness and surface roughness of the torus surfaces were experimentally investigated, and a better matching effect of dissolution and grinding was obtained. Moreover, the experimental results showed that the inner-jet ECG had a good prospect in the batch processing of high-hardness stainless steel parts.

Funder

Opening Foundation of Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3