Synchronization of Heterogeneous Multi-Robotic Cell with Emphasis on Low Computing Power

Author:

Juhás MartinORCID,Juhásová BohuslavaORCID

Abstract

This paper presents a time-synchronization solution for operations performed by a heterogeneous set of robotic manipulators grouped into a production cell. The cell control is realized using master–slave architecture without an external control element. Information transmission in a cell is provided by a TCP/IP channel in which communication is ensured via sockets. The proposed problem solution includes an algorithm, which is verified and validated by simulation and tested in real environment. This algorithm requires minimal computational power thanks to an empirically oriented approach, which enables its processing directly by the control unit of each participating element of the robotic cell. The algorithm works on the basis of monitoring and evaluating time differences among sub-operations of master and slave devices. This ensures defined production cycle milestones of each robotic manipulator in the cell at the same time are attained. Dynamic speed adaptation of slave manipulators utilizing standard instructions of their native language is used. The proposed algorithm also includes a feedforward form of operations synchronization which responds to changes in the operating cycle of the master manipulator. The application of the solution proposal is supplemented with a visualization part. This part represents a complementary form of designed solution implementation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gestão de projeto utilizando indicador-chave de desempenho (KPI) na simulação virtual do desenvolvimento de uma célula robotizada atuando em processos automotivos;Revista de Gestão e Secretariado (Management and Administrative Professional Review);2023-03-27

2. Special Issue on Multi-Robot Systems: Challenges, Trends, and Applications;Applied Sciences;2021-12-14

3. Increasing the Efficiency of a Robotic Cell Using Simulation;Research Papers Faculty of Materials Science and Technology Slovak University of Technology;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3