Multiblock Analysis Applied to TD-NMR of Butters and Related Products

Author:

Roger Jean-MichelORCID,Garcia Silvia Mas,Cambert Mireille,Rondeau-Mouro CorinneORCID

Abstract

This work presents a novel and rapid approach to predict fat content in butter products based on nuclear magnetic resonance longitudinal (T1) relaxation measurements and multi-block chemometric methods. The potential of using simultaneously liquid (T1L) and solid phase (T1S) signals of fifty samples of margarine, butter and concentrated fat by Sequential and Orthogonalized Partial Least Squares (SO-PLS) and Sequential and Orthogonalized Selective Covariance Selection (SO-CovSel) methods was investigated. The two signals (T1L and T1S) were also used separately with PLS and CovSel regressions. The models were compared in term of prediction errors (RMSEP) and repeatability error (σrep). The results obtained from liquid phase (RMSEP ≈ 1.33% and σrep≈ 0.73%) are better than those obtained with solid phase (RMSEP ≈ 5.27% and σrep≈ 0.69%). Multiblock methodologies present better performance (RMSEP ≈ 1.00% and σrep≈ 0.47%) and illustrate their power in the quantitative analysis of butter products. Moreover, SO-Covsel results allow for proposing a measurement protocol based on a limited number of NMR acquisitions, which opens a new way to quantify fat content in butter products with reduced analysis times.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3