Abstract
The present paper discusses the analysis and modeling of laboratory data regarding the mechanical characterization of hot mix asphalt (HMA) mixtures for road pavements, by means of artificial neural networks (ANNs). The HMAs investigated were produced using aggregate and bitumen of different types. Stiffness modulus (ITSM) and Marshall stability (MS) and quotient (MQ) were assumed as mechanical parameters to analyze and predict. The ANN modeling approach was characterized by multiple layers, the k-fold cross validation (CV) method, and the positive linear transfer function. The effectiveness of such an approach was verified in terms of the coefficients of correlation ( R ) and mean square errors; in particular, R values were within the range 0.965 – 0.919 in the training phase and 0.881 – 0.834 in the CV testing phase, depending on the predicted parameters.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献