Author:
Jalota Samrity,Suthar Manju
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Airey, G. D., Collop, A. C., Zoorob, S. E., & Elliott, R. C. (2008). The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Construction and Building Materials, 22(9), 2015–2024.
2. Alam, M. N., & Aggarwal, P. (2020). Effectiveness of anti stripping agents on moisture susceptibility of bituminous mix. Construction and Building Materials, 264, 120274.
3. Alkayem, N. F., Cao, M., Zhang, Y., Bayat, M., & Su, Z. (2018). Structural damage detection using finite element model updating with evolutionary algorithms: a survey. Neural Computing and Applications, 30, 389–411.
4. Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020). A systematic review on supervised and unsupervised machine learning algorithms for data science. Supervised and unsupervised learning for data science (pp. 3–21). Cham: Springer.
5. Althoey, F., Akhter, M. N., Nagra, Z. S., Awan, H. H., Alanazi, F., Khan, M. A., Javed, M. F., Eldin, S. M., & Özkılıç, Y. O. (2023). Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: a comparative study. Case Stud Constr Mater, 18, 01774.