Application of 1D ResNet for Multivariate Fault Detection on Semiconductor Manufacturing Equipment

Author:

Tchatchoua Philip12ORCID,Graton Guillaume13,Ouladsine Mustapha1,Christaud Jean-François2

Affiliation:

1. LIS, CNRS, Aix Marseille University, University of Toulon, 13007 Marseille, France

2. STMicroelectronics, 13106 Rousset, France

3. Ecole Centrale de Marseille (Centrale Méditerranée), 13013 Marseille, France

Abstract

Amid the ongoing emphasis on reducing manufacturing costs and enhancing productivity, one of the crucial objectives when manufacturing is to maintain process tools in optimal operating conditions. With advancements in sensing technologies, large amounts of data are collected during manufacturing processes, and the challenge today is to utilize these massive data efficiently. Some of these data are used for fault detection and classification (FDC) to evaluate the general condition of production machinery. The distinctive characteristics of semiconductor manufacturing, such as interdependent parameters, fluctuating behaviors over time, and frequently changing operating conditions, pose a major challenge in identifying defective wafers during the manufacturing process. To address this challenge, a multivariate fault detection method based on a 1D ResNet algorithm is introduced in this study. The aim is to identify anomalous wafers by analyzing the raw time-series data collected from multiple sensors throughout the semiconductor manufacturing process. To achieve this objective, a set of features is chosen from specified tools in the process chain to characterize the status of the wafers. Tests on the available data confirm that the gradient vanishing problem faced by very deep networks starts to occur with the plain 1D Convolutional Neural Network (CNN)-based method when the size of the network is deeper than 11 layers. To address this, a 1D Residual Network (ResNet)-based method is used. The experimental results show that the proposed method works more effectively and accurately compared to techniques using a plain 1D CNN and can thus be used for detecting abnormal wafers in the semiconductor manufacturing industry.

Funder

STMicroelectronics company and MadeIn4 European project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3