Leakage Identification of Underground Structures Using Classification Deep Neural Networks and Transfer Learning

Author:

Wang Wenyang12,Chen Qingwei12,Shen Yongjiang34,Xiang Zhengliang34ORCID

Affiliation:

1. Shandong Zhiyuan Electric Power Design Consulting Co., Ltd., Jinan 250021, China

2. Economic & Technology Research Institute of State Grid Shandong Electric Power Company, Jinan 250021, China

3. Hunan Province Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure, Central South University, Changsha 410075, China

4. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

Water leakage defects often occur in underground structures, leading to accelerated structural aging and threatening structural safety. Leakage identification can detect early diseases of underground structures and provide important guidance for reinforcement and maintenance. Deep learning-based computer vision methods have been rapidly developed and widely used in many fields. However, establishing a deep learning model for underground structure leakage identification usually requires a lot of training data on leakage defects, which is very expensive. To overcome the data shortage, a deep neural network method for leakage identification is developed based on transfer learning in this paper. For comparison, four famous classification models, including VGG16, AlexNet, SqueezeNet, and ResNet18, are constructed. To train the classification models, a transfer learning strategy is developed, and a dataset of underground structure leakage is created. Finally, the classification performance on the leakage dataset of different deep learning models is comparatively studied under different sizes of training data. The results showed that the VGG16, AlexNet, and SqueezeNet models with transfer learning can overall provide higher and more stable classification performance on the leakage dataset than those without transfer learning. The ResNet18 model with transfer learning can overall provide a similar value of classification performance on the leakage dataset than that without transfer learning, but its classification performance is more stable than that without transfer learning. In addition, the SqueezeNet model obtains an overall higher and more stable performance than the comparative models on the leakage dataset for all classification metrics.

Funder

technology project funding from Shandong Zhiyuan Electric Power Design Consulting Co., Ltd.

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3