Machine learning paradigm for structural health monitoring

Author:

Bao Yuequan12ORCID,Li Hui12ORCID

Affiliation:

1. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, 150090, China

2. School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China

Abstract

Structural health diagnosis and prognosis is the goal of structural health monitoring. Vibration-based structural health monitoring methodology has been extensively investigated. However, the conventional vibration–based methods find it difficult to detect damages of actual structures because of a high incompleteness in the monitoring information (the number of sensors is much fewer with respect to the number of degrees of freedom of a structure), intense uncertainties in the structural conditions and monitoring systems, and coupled effects of damage and environmental actions on modal parameters. It is a truth that the performance and conditions of a structure must be embedded in the monitoring data (vehicles, wind, etc.; acceleration, displacement, cable force, strain, images, videos, etc.). Therefore, there is a need to develop completely novel structural health diagnosis and prognosis methodology based on the various monitoring data. Machine learning provides the advanced mathematical frameworks and algorithms that can help discover and model the performance and conditions of a structure through deep mining of monitoring data. Thus, machine learning takes an opportunity to establish novel machine learning paradigm for structural health diagnosis and prognosis theory termed the machine learning paradigm for structural health monitoring. This article sheds light on principles for machine learning paradigm for structural health monitoring with some examples and reviews the existing challenges and open questions in this field.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3