GenAI-Assisted Database Deployment for Heterogeneous Indigenous–Native Ethnographic Research Data

Author:

Wang Reen-Cheng1ORCID,Yang David1,Hsieh Ming-Che2,Chen Yi-Cheng2,Lin Weihsuan3

Affiliation:

1. Department of Computer Science and Information Engineering, National Taitung University, Taitung 950309, Taiwan

2. Department of Information Science and Management Systems, National Taitung University, Taitung 950309, Taiwan

3. Interdisciplinary Bachelor’s Program, National Taitung University, Taitung 950309, Taiwan

Abstract

In ethnographic research, data collected through surveys, interviews, or questionnaires in the fields of sociology and anthropology often appear in diverse forms and languages. Building a powerful database system to store and process such data, as well as making good and efficient queries, is very challenging. This paper extensively investigates modern database technology to find out what the best technologies to store these varied and heterogeneous datasets are. The study examines several database categories: traditional relational databases, the NoSQL family of key-value databases, graph databases, document databases, object-oriented databases and vector databases, crucial for the latest artificial intelligence solutions. The research proves that when it comes to field data, the NoSQL lineup is the most appropriate, especially document and graph databases. Simplicity and flexibility found in document databases and advanced ability to deal with complex queries and rich data relationships attainable with graph databases make these two types of NoSQL databases the ideal choice if a large amount of data has to be processed. Advancements in vector databases that embed custom metadata offer new possibilities for detailed analysis and retrieval. However, converting contents into vector data remains challenging, especially in regions with unique oral traditions and languages. Constructing such databases is labor-intensive and requires domain experts to define metadata and relationships, posing a significant burden for research teams with extensive data collections. To this end, this paper proposes using Generative AI (GenAI) to help in the data-transformation process, a recommendation that is supported by testing where GenAI has proven itself a strong supplement to document and graph databases. It also discusses two methods of vector database support that are currently viable, although each has drawbacks and benefits.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3