Efficient Methodology for Detection and Classification of Short-Circuit Faults in Distribution Systems with Distributed Generation

Author:

Santos Andréia da Silva,Faria Lucas TelesORCID,Lopes Mara Lúcia M.,Lotufo Anna Diva P.ORCID,Minussi Carlos R.ORCID

Abstract

Fault detection and classification are crucial procedures for electric power distribution systems because they can minimize the occurrence of faults. The methods for fault detection and classification have become more problematic because of the significant expansion of distributed energy resources in distribution systems and the change in their currents due to the action of short-circuiting. In this context, to fill this gap, this study presents a robust methodology for short-circuit fault detection and classification with the insertion of distributed generation units. The proposal methodology progresses in two stages: in the former stage, the detection is based on the continuous analysis of three-phase currents, whose characteristics are extracted through maximal overlap discrete wavelet transform. In the latter stage, the classification is based on three fuzzy inference systems to identify the phases with disturbance. The short-circuit type is identified by counting the shorted phases. The algorithm for short-circuit fault detection and classification is developed in MATLAB programming environment. The methodology is implemented in a modified IEEE 34-bus test system and modeled in ATPDraw with three scenarios with and without distributed generation units and considering the following parameters: fault type (single-phase, two-phase, and three-phase), angle of incidence, fault resistance (high impedance fault and low impedance fault), fault location bus, and distributed generation units (synchronous generators and photovoltaic panels). The accuracy is greater than 94.9% for the detection and classification of short-circuit faults for more than 20,000 simulated cases.

Funder

Coordination for the Improvement of Higher Education Personnel

CNPq Agency, Brazil

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3