Power Distribution Systems’ Vulnerability by Regions Caused by Electrical Discharges

Author:

Santos Andréia S.1,Faria Lucas Teles2ORCID,Lopes Mara Lúcia M.1,Minussi Carlos R.1ORCID

Affiliation:

1. Department of Electrical Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, São Paulo, Brazil

2. Department of Energy Engineering, São Paulo State University (UNESP), Rosana 19274-000, São Paulo, Brazil

Abstract

Energy supply interruptions or blackouts caused by faults in power distribution feeders entail several damages to power utilities and consumer units: financial losses, damage to power distribution reliability, power quality deterioration, etc. Most studies in the specialized literature concerning faults in power distribution systems present methodologies for detecting, classifying, and locating faults after their occurrence. In contrast, the main aim of this study is to prevent faults by estimating the city regions whose power grid is most vulnerable to them. In this sense, this work incorporates a geographical-space study via a spatial data analysis using the local variable electrical discharge density that can increase fault risks. A geographically weighted spatial analysis is applied to data aggregated by regions to produce thematic maps with the city regions whose feeders are more vulnerable to failures. The spatial data analysis is implemented in QGIS and R programming environments. It is applied to the real data of faults in distribution power grid transformers and electrical discharges in a medium-sized city with approximately 200,000 inhabitants. In this study, we highlight a moderate positive correlation between electrical discharge density and the percentage of faults in transformers by regions in the central and western areas of the city under study.

Funder

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development (CNPq) Agency—Brazil

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3