Exploring the Influence of Terrain Blockage on Spatiotemporal Variations in Land Surface Temperature from the Perspective of Heat Energy Redistribution

Author:

Gao Hong12ORCID,Dong Yong1,Zhou Liang123,Wang Xi1

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China

2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China

3. Department of Geography, University of California, Santa Barbara, CA 94607, USA

Abstract

Land surface temperature (LST) is a critical indicator of the earth’s surface environment, which has significant implications for research on the ecological environment and climate change. The influence of terrain on LST is complex due to its rugged and varied surface topography. The relationship between traditional terrain features and LST has been comprehensively discussed in the literature; however, terrain blockage has received less attention and could influence LST by hindering the redistribution of heat energy in mountain regions. Here, we investigate the influence of terrain blockage on the spatiotemporal variation in LST in mountain regions. We first propose a terrain feature framework to characterize the effect of terrain blockage from the perspective of heat energy redistribution and then adopt a random forest model to analyze the relationship between terrain blockage features and LST over a whole year. The results show that terrain blockage significantly influences the spatial heterogeneity of LST, which can be effectively simulated based on terrain blockage features, with a mean deviation of less than 0.15 K. Terrain blockage has a more pronounced influence on LST during the four months from June to September. This influence is also more evident during nighttime than daytime. Regarding LST in mountain regions, local terrain blockage features have a greater influence than global terrain blockage features. In spatial terms, the influence of terrain blockage on LST is uniform. Moreover, the diurnal variation in LST can also be effectively simulated based on terrain blockage. The contribution of this study lies in the finding that terrain blockage can influence the spatiotemporal variation in LST through the process of heat energy redistribution. The terrain blockage features proposed in this study may be useful for other studies of the ecological environment in mountain regions.

Funder

Science-Technology Foundation for Young Scientists of Gansu Province

National Natural Science Foundation of China

Young Scholars Science Foundation of Lanzhou Jiaotong University

Natural Science Foundation of Gansu Province

CAS ‘Light of West China’ Program

Basic Research Top Talent Plan of Lanzhou Jiaotong University

Talent Innovation and Entrepreneurship Project of Lanzhou

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3