Understanding Growth-Induced Trends in Local Climate Zones, Land Surface Temperature, and Extreme Temperature Events in a Rapidly Growing City: A Case of Bulawayo Metropolitan City in Zimbabwe

Author:

Mushore Terence Darlington,Mutanga Onisimo,Odindi John

Abstract

Assessment of the responses of the urban thermal environment to climate is important, especially because of their possible influence on low- and high-temperature extreme events. This study assessed the combination of remotely sensed land surface temperature (LST) and local climate zones (LCZs) with in situ air temperature-retrieved extreme temperature indices. It aimed to assess the effect of urban growth on the three-dimensional thermal environment in the Bulawayo metropolitan area, Zimbabwe. LST and LCZ were derived from the Landsat data for 1990, 2005, and 2020, while extreme temperature indices and trends were derived from daily minimum and maximum temperature data from a local weather station. Results showed that the built LCZ expanded at the expense of vegetation-based LCZ. Average LST for each LCZ increased from 1990 to 2020, which was attributed to background warming, while the expansion of high LST areas was associated with LCZ transitions. Although average minimum temperature decreased, cool nights increased, warmest nights remained unchanged, and the lowest minimum increased, the highest minimum temperatures decreased, but the trends were not statistically significant (p > 0.05). Indices of daytime warming showed significant changes, which includes an increase in average maximum temperature (p = 0.002), increase in lowest maximum temperature (p = 0), increase in the number of very warm days (p = 0.004), and decrease in the number of cool days (p = 0). The significant increase in daytime extremes was attributed to an increase in highly absorbing LCZ and daytime pollution due to industrial activities. The study also concluded that development in water areas or siltation of water bodies has a greater warming effect than other LCZ changes. The findings show that development needs to consider potential effects on the thermal environment and temperature extremes.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3