Modulated Response of Subtropical Gyres: Positive Feedback Loop, Subharmonic Modes, Resonant Solar and Orbital Forcing

Author:

Pinault Jean-LouisORCID

Abstract

Evidence of long-term variability in the upper ocean has emerged for two decades. Most of the issues discussed raise a lot of questions. What is the driver of the decadal oscillation of rainfall in Europe that has been observed since the end of the 20th century? How to explain low-frequency variability as observed in the Atlantic Multidecadal Oscillation (AMO)? More generally, how does solar and orbital forcing occur during very long-term climate change? The observations suggest that both a positive feedback loop amplifies the effects of the insolation gradient on the climate system and a resonance phenomenon occurs, filtering out some frequencies in favour of others. Throughout this paper, some answers to these problems are given from a new concept based on the modulated response of subtropical gyres to solar and orbital forcing. Subtropical gyres turn out to be the main driver of long-term climate variability because they tightly control, via the western boundary currents, heat transport from the tropics into middle and high latitudes. Specifically, the theoretical foundations of long-period Rossby waves winding around the subtropical gyres are laid, suggested by the observations of persistent sea surface temperature anomalies at mid-latitudes. Multi-frequency Gyral Rossby Waves (GRWs) exhibit properties resulting from their annular structure and their coupling. Using a β-cone approximation, the momentum equations are solved in polar coordinates. The gradient β of the Coriolis parameter depends on the mean radius of the annulus and remains constant all around the latter. GRWs result from the variation in the Coriolis Effect with the mean radius of the annulus. The speed of the anti-cyclonically wind-driven circulation being higher than the phase velocity of cyclonically propagating GRWs, amplified forcing effects occur as well as resonances for periods consistent with the observations.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3